
-._ - 

TECHNICAL NOTES 

NATIONAL ADVISORY COMMITTEE POB AERONAUTICS 

No. 717 

A METHOD OF ESTIMATLXG THE CRITICAL BUCKLIXG 

LOAD E'OR SIRUCTURkL ?diZMBERS 

By Eugene E. Lundquist 
Lanqlky Memorial Aeronautical Laboratory 

- 



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECRNICAL NOTE NO. 717 
II-- 

A METHOD OF ESTIMATING THE CRITICAL BUCKLING 

LOAD FOR STRUCTURAL MEMBERS 

By Eugene E. Lundquist 

SUMMARY 

The relations between load on the structure and rota- 
tion of a joint can be ussd to estimate the lowest crfti- 
cal load after the equation for neutral stability has been 
tested for three assumed critical loads, each of which is 
less than the lowest critical load. 

The solutions of sfx simple problems are included to 
illustrate the a>plfcation of the method of estimating 
crltical,loads and to reveal certain characteristics Of 
the method that should be known by the practical engineer 
using ft. Four of these problems are concerned with mem- 
bers that lie in the elastic, or long-column, range. The 
other two problems are concern& with members that lie fn 
the short-column range. 

INTRODUCTION 

One of the problems in the design of structures is to 
make certain that the compression members are stable un- 
der the loads to be carrfed. For structures built with 
the members joined to each other by frictionless pins, the 
usual column formulas can be directly applied to the de- 
sign of the compression members. For structures built 
with the members continuous at the joints, however, the de- 
sign of any one member is dependent upon the design of all . 
other members. 

Reference 1 shows how the principles of the Cross 
method of moment dfstribution can be used-to check the 
stability of structural members under axial load and hende 
the safety of the desfgn. In this method, the critical 
load for the system of members is calculated and compared 
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tvith the applied load. If the critical load is greater 
than the applied load, the members are stable. If the 
critical load is less than the applied load, the system is 
unstable+and a larger sise for one or more of the compres- 
sion members must be selected. 

One disadvantage of any method of calculating the crft- 
ical load for a system of structural members under axial 
load is that, for each type of instability, there is a Car- 
responding critical load. In design, the lowest critical 
load is the only one of interest. When the stab?lLity of a 
group of structural members is checked, it is therefore the 
lowest of these critical loads that must bs calculated and 
compared with the applied loads. 

Although.the two equations for neutral stability given 
in reference 1 are algebraic in appearance, they are fun- 
damentally transcendental in character with the unknown 
critical load entering in angles. The msthod of solution 
used in reference I. was to assume several valu-es of the 
Critical load and to test one of the equations for neutral 
stability. If the first load in the series of assumed 
loads is made sufficiently small, the lowest assumed load 
that just satisfies this equation fs the critical load de- 
sired. 

Unless the designer is fortunate in selecting the as* 
sumed critical loads, considerable time and labor are re- 
qufred to find the lowest cr5tical load. In Order to make 
the theory of reference 1 more useful in practical CalCUla- 
tions, a method of estimating the lowest critical load is 
presented in this report. 

In this paper, as in reference 1, it is assumed that 
the members lie in a plane and that buckling occurs in this 
plane, It is further assumed that the joints of the struc- 
ture are held rigidly in space but are free to rotate un- 
der the elastic restraint of fh8 interconnecting members" 

DEFINITIONS AND SY?LBOLS 

The following definitions of s.tiffness and carry-over 
factor are the same as those givsn in references 1 and 2. 
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If a member is on unyfeldjlng sunports at each end, 
the moment at one end necessary to produce a rotation of 
one-fourth radian of that end 1s called the l'stiffnessi" 
The stiffness of a member will aepena upon the amount of 
restraint at the far end. In the derivation of the crite- 
rion for stability as given in reference 1, three types of 
restraint at the far end are considered. The symbols used 
to designate the 'stiffness for the different types of re- 
straint are: 

S, far end fixed. 

St, far end elastically restrained. 

S” , far end pinned. 
_= 

The stiffness of a member computed according to= the 
foregoing definition is one-fourth that computed accord- 
ing to the definition given in references 3 and 4. In the 
Gross method, the relative sttffness of the members -is of 
importance and not the absolute value. The foregoing def- 
inition was selected so that the stiffness of a member of 
constant cross section-with no axfal load and fixed at 
the far end would be XI/L instead of 431/L. 

Carry-Over Factor 

If a member is on unyielding supports at each'end and 
a moment is applied at the near end, the ratio of the mo- 
ment developea at the'far end to the moment applied at the 
near end is called the "carry-over factor." As in the 
case of stiffness, the carry-over factor nil1 depend uPon 
the degree of restraint at the far end of the. member; The 
symbols used to designate the carry-over factor for the . 
different types of restraint are: 

C, far end fixed. 

Of, far end elastically restrained. 

C” = 0, far end pinned. 
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Sign Convention. 

The sign convention used in this report is the same 
as that,ussd in references L, 2, and 4. A clockwJse mo- 
ment acting on the end of 'a member is positive. A coun- 
terclockw2s.e mom-ent acting. on a joint is p.ositive. An-ox- 
.ternal moment applied at a join% 1s considered to sot on 
the j.oint. A positive moment.actLng on the.enb. of a mom- 
ber causes positive rotatiop of that end; -. 

Symbols 

modulus of elastiaity. 

effective modulus of elasticity. 

moment of inertia of cross section of member 
about a centroidal axis normal to the plane 
of bending. 

length of member. 

total load on the struature. 

axial load in member (absolute value). 

area of cross section. 

f 
1 

, 

restraint coefficient in the usual column formula. 

I 
I- K ' radius of gyration. 'r 

. L -- - 

I- 
F 

II 
( ) 

L . -7 = I-y 
3 eff.. 

J- 
EI -. . . . ..C 
P 

* . 

T 5 = --- 
E 

. 
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XETEOD OF ESTIMATING THE QRITICAL LOAD 

The method of estimating the lowest crftical load is 
based upon the princfples discussed in references 5 and 6 

.for the analysis of experimental observations in problems 
of elastic stability. In reference 5, Southwell mentions 
that the unavoidable imperfections in practical structures 
prevent the realization of.the cpncept of a crftical load 
at which deflections begin. Instead, the initial deflec- 
tions present in practical structures steadily increase 
with load and, according to the usual theory, the aQfleC-- 
tEons become infinite as the critical loaa is approached. 

. . 
In referenaes 5 and 6, the relation between load and 

deflection for problems of elastic stability is also dis- 
cussed. The more general ze'lation given in reference 6 

shows that, if 
Y - Yl 
7-p is plotted as ordinate against 
p 1 

Y- y, as abscfssa, the curve obtained when P approaches 
P crit is essentially a straight lfne the inverse slope of 
which is Pcrif .- PI, where 

Y is deflection at axial load P in a member. . : 

9 
and PI, inftial Values Of Y and P, respec- 

tively. 

P crit' lowest critical load. 

_ . 
----- 

p1 = PC ‘cr-t ,.:. 
..iT 

(1) 

Thus, 'if simultaneous readings of load and deflection re- 
corded in a test are plotted as just descr-ibea beginning 
with any load P, as the fnitial reading, the value of 
P crit - pl 5s read5ly obtained.' The' value of. P,,ft is 
then qiven. by the relation 

'P crit = (Pcrft W PJ + P, . . - (2) 

The relation between load and dQfl8CtfOn can also be 
applied to load and rotation of.a joint. In order to use 
this relation in theoretical calculations, there must b8 
initial rotation of the joints. This rotation is obtained 

- 
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by a fictitious external moment M applied at Borne joint, 
after whfch the load on the structure is imagined to be 
applied. The effect of the tension, in the tension members 
is such as to reduce the rotations caused by the external 
moment EL; whereas the effect.of the compression in tho 
compreseion members is such as to increaeo.tho rotatione. 
As the lowest critical load ie approached, the offocts of 
compression completely overshadow the affects of tension 
with the result that the rotafionB becomo fnfinits. 

If the distribution of the total load W on tho 
'structure does not change as Op increases, thon th-o axial 
-load in each momber ie proportional to W. Thus, if 
? - y -v-M 
I? - m, iB plotted as ordinate a$ainSt e - 8, as abscissa, 

the curve obtained when W approaches brit iB QSSQ?l- 

tially a straight line the inverse slope of which is 

wcrit m mu* where 

8 is rotation of a joint under the moment H 
at load W on the structure. 

*1 and W,, initial values of 8 and IF, respectively. 

Iv crif' lowest critical load. ' 

and 

(3) 

l?hus, If simul.taneous values of load and rotation are plot- 
ted as jUBt deBCr%bed besinning with W, as the initial 
load, the value of Wcrit " Wr is easily obtained. The 
value of Wcrit ie then geven by the equation 

(4.) 

The procedure to be used fn estimating the critical 
load for a group of structural members is: 

1. Assume three values.of W that are known to 
be l0BS than Wcrdt. This condition is satisfied if 
the vaLues of W are selected 80 that the axial lOad 
in each compression member is loss than the strength 
of that member with both ends pinned. 

l 

* 
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2. Calculate the rotation 9 of some joint for 
each of the assumed.loads W by use of equations 
given later. 

3. Designate the lowest assumed value of W 
and the corresponding value of 6 as W, 
respectively. 

and el, 

4. Plot the curve of 
0 - e1 
5-T 

as ordinate 

against 6 - 6, as abscissa. The three assumed loads 
will give two points on this curve, which are suffi- 
cient to establish an approximate value of Wcrit - 
=I and, hence, of W,,it. In practical calculations, 
tho actual plotting of the curve can be omitted be- 
cause the inverse slope Wcrit - '1 would always be 
calculated from the numerical values used to plot the 
curve. If more than three values of W are assumed, 
however, it may be of fntsrest actually to plot the 
curve. -' 

ROTATION OF A JOINT 

The rotation 6 of a joint is easily calculatea by 
the methods of moment distribution. Either of two equa- 
tions may be used, according to whether the stiffness or 
the serfes criterion for stabiltity forms the basis. (see 
reference 1.) 

Stiffness Criterion for Stability 

Assume that an external moment M is applied at joint 
b in figure 1. The moment -M added to balance this 
joint is distributed among the members ae follows: 

- .-_ 
. M S’s -- 

= "bc 
to member 'bc, . . 

' "bcs 
- c Sfbc 

1 to member bc, 

etc. 
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The moment distribution analysis is now oomplete as far as 
moments at joint b are concerned. (See corresponding 
discussion in reference 1.) 

FQure 2 

According to the definition of stiffness, the moment 
distributed to any member must be the rotation of the joint 
multiplied by the stiffness of the member, Bence, 

--I 
- dbc fs the rotation in quarter-radians of joint b, 

caused by the external morqent M. For the purpose of os- 
timatfn$ critical loads, M can 'liave.any 'finite value. 
For the most convcniont value, bf = - 1, the rotation 6 
is, in quart&r-radians, c 

c 
8 1 ?. 

= c Sfbc 
(51 

. 
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Bor stability, the moment in the members and the ro- 
tation of the joints must be finite. The stiffness cri- 
terion for stability is therefore (reference 1) 

c S’bc > 0 (6) 

The condition of neutral stability gives the critical 
buckling load for the structure and is obtained by setting 
the stiffness stability factor CS’bc equal to zero, or 

c s *lc = 0 (7) --- 

Formulas (6) and (7) are also derived in reference 1. 
The critical load for the structure is obtained by testing 
equation (7) for different assumed critical loads; the lom- 
est assumed critical load that just satisfies equation (7) 
is the critical load desired, If the applied load is less 
than this lowest critical load, the structure fs stable; 
if not, the structure is unstable. The method of estimat- 
ing the critical load 1s therefore a tool to a&d in find- 
ing the lowest critical load that will satisfy equation (7). 

' Series Criterion for Stabflity 

Assume that an external moment M is applied at joint 
b in figure 2. From the corresponding analysis in refer- 
ence I, it follows that the total moment in members' ba at 
joint b is 

Cl r + rz + 

or 
M c s Iba 1 -- . -- 

- %c 
- 

+ C Stba 1 - r 

r3 

where 

%c %c s 
r =-- cb %2-.- 

sac -I- c s !%a s&p -I- E: s Icd 
---. 

ib?. . 

-I- . . . . 1 . 

-18 > 
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, dl 
&I 

\\ 
F M, external moment 

.; 

Figure2 
. . 

According to the definition of stiffness, the total 
moment in members ba at joint b must be the rotation 
of joint b multiplied by the total stiffness of members 
ba. .Hence, 

K I 
-;s 

-- 
bc + C S *%a 1 - r 

is the rotation in quarter-radians of joint b caused by 
the external moment M. For the purpose of estimating 
critical loads, M can have any finite value. Por the 
most convenfent value,. M = - 1, the rotation Cl is, in 
quarter-radians, 

1 1 
BZZ -- - - 

Sbc + E SIba 1 - r 
(9) 

For stability, the moment in the members and the ro- 
tation of the joints must be finite. A-s stated in refor- 
ence 1, the series criterion for stabflity is therefore 

r cl (10) 

The condition of neutral stability qfves the critical 
buckling load for the structure and is obtained by setting 
the series stability factor r equal to unity, or 

r-l (11) 
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Formulas (10) and (11) are also derived in reference 
1. These expressions are sometimes more convenient to use 
than the corresponding formulas (6) and (7). In cases 
when the structure is symmetrical about a joint, the 8x1 
pressions concerned with the stiffness criterion usually 
involve fewer calculations. When the structure is symmet- 
rical about a member, ths formulas' concerned with the se- 
ries criterion offer certain ,advantages. Experience in 
the solution of practical problems will dictate which 8X- 
pressions result in fewer calculations. In any case, ei- 
ther set is correct and the method of estimating the Crit- 
ical load is a tool to aid in finaing the lowest critical 
load that will satisfy the equation for neutral stability, 
either equation (7) or equation (11). 

CARRY-OVER FACTOR AND STIFFNESS 

In order to check the stability of a group of struc- 
tural members by use of the previously given formulas, 
additional eqtiations for the carry-over factor and the 
stiffness are required, 

Figure 3 . 1 
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Consider the member ij shbnn. fn figure 3, simply 
supported at i and.,elastically restrained at j by mem: 
bors q'jk. !Che members jk are,also elastically restrained 
at ,their far ends k. By a, moment-distribution analysis 
given in reference 1, the carry-over ‘factor .+ 

C'ij is 

c ‘ij = 
% 

c S’ Sk ,I[ ji + csr- 3k 
and the stiffness s*ij is 

~~s"i,s.--- S'ij = 1 - Gji 5j 

Substitution of equation (12) in (13) gives 

Slij = 
Tj ---a-- -- 

1-G 
= "jk 

ji "ij r---- ji f c S'. 
Jk 

02 ) 

(13) 

(141 

, 

For m-ember ij, the limiting values of the carry-over 
factor and th8 stiffness given by equations (12) and (14). 
respectively, are obtained as follows. When the far end 
j is pinned, there is no elastic restraint at j and 
cs'jk = 0. For this limiting condition, the carry-over factor 
c tij = Pij = 0 and the stiffness S'ij = S"ij' When the 

far end j is fixed, there is complete restraint 8t j 
and CWjk = co* For this limiting conaitfon, the carry- -- 
over factor crij = Cij and the stiffness S'ij = sij, 
where 

-s"L-_ 
Sij = 1 - 'ji Sij 

(15) 

Up to this point, all the equations in this report on 
stability are general. In nearly all of the cases encoun- 
tered in practice, however, the cross section and the axial 

c 
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load do not vary along the length of each member. Par 
this special case, 
sjie 

Cl3 E Cji, S"ij, = S"jf, and 's,j.' 

In practical problems, $he numerical values for 
these quantities are obtained by.use‘of the tabl'e's given 
in reference 2. 1 * -c...- - 

PROBLEMS 

The purpose of including problems is to demonstrate 
the previously described method of estimating critical 
loads, Six simple problems have been selected to reveal 
certain characteristics of the method that should be known 
by the practical engineer using it. In order to show the 
accuracy of the estimated critical load, the correct value 
of the critical load for each problem fs first established. 

The tables of reference 2 were used in the numerical 
evaluation of the stiffness and the carry-over factor. Al- 
though interpolation in these tables is unnecessary for 
the solution of practical problems, interpolation was used 
for the solution of these problems to show clearly how the 
estimated critical load becomes more accurate as the as- 
sumed loads IV and 'Iv, approach W,,it. 

In problems 1 to 4, it is assumed that the members 
are subjected to low stresses corresponding to the elastic 
range where the effectfve modulus E is equal to Young's 
modulus E. In problems 5 and 6, the compression members 
are loaded above the elastic range where E < E. In other 
words, for problems 1 to 4, the compressfon members lie in 
the long-column range; whereas, in problems 5 an8--6, the 
compression members lie in the short-column range. 

Problem 1 

Problem: To calculate the critical load for the pin- 
end strut shown in figure.4. 

Compression P . 

EI = 10,000 1b.in.s 

Figure 4. - Problem 1. 
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The equations concerned mith the stiffness criterion 
for stability are used in the solution of this problem. 
Imagine the external moment M to be applied at joint b. 
The correct value of the critical load is therefore the 
lowest assumed load that will satisfy equation (7).. There 
being only one member bc, the summation sign is omitted. 
Because this member bc is pinned at the far end .c, the 
sing18 prime on 'bc is replaced by a double prfme. Thus 
for this problem, equation (7) becomes 

S"bc = 0 (16) 

For member bc 

11 = 10,000 lb. in.a ' 

L = 100 in. 

Consequently, 

L L ---.=JF-- 
3 

J-- EI -- 
P 

. 

From the tables of reference 2, it is found .thnt the small- 
est value of P to satisfy equation (16) isthe value of 
P glltrfng L/j = n. Therefore the correct critical load 
iS 

P crit = 'IT a = 9.87 lb. 

which agrees with the value given by the well-known Euler 
column formula 

(17) 

The estimated value of the critical load is given by 
the inverse slope of the approximately straight line ob- 

8 -8 
'tained by plotting Ed as ordinate against 6 - 6, as 

1 
abscissa. For this problem, IV = P and equation (5) be- 
comes 

8 1 = -- 
"'bc 

08) 
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The values of 8 are given in table I for a series of 

and ~317.1~3~ of 8 - 8, 
e- 

assumed loads P: and - 8, are 
p-p, 

given for P, = 0, 3, and 7 pounds. Table I was made ex- 
tensive in order to show how' the estimated critical load 
is affected by 9, as well as by the values of P at 
which the inverse slope is computed. 

The approximately straight lines that correspond to 
Pl = 0, 3, ana 7 pounds are plotted in figure 5. Inspec- 
tion shows the lines corresponding to P, = 0 and P, = 
3 pounds to be essentially straight. As only two points 
establfsh the line for P, = 7 pounds, no conclusion re- 
garding its straightness is justfffed: . 

If P, 3 0, then the inverse slope between P = 1 
and P = 2 pounds 13 (see table I) 

P crit - pl 
= ~002202 - 0.6200~ = 

0.001101 - 0.000983 
10.33 lb. 

from which 

P crit = (Pcrit m PJ + P, = 10.33 f 0 T 10.33 lb. 

The results of a number of calculations of this type 
for other values of P =a PI are given in table II. 
Inspection of this table shows that, for any value of P,, 
the estimated critical load becomes more accurate as the 
values of P between which the inverse slope is calcu- 
lated approach Pcriit* The accuracy is also increased ai P 
pl approaches Porite 

.- 

Problems 2, 3, and 4 

The purpose of problems 2, 3, and 4 is to study the 
effocf; of the tension in tension members on the estimated 
critical load for a structure. In these problems, end b 
of the strut used.in problem 1 is restrained against rota- 
tion-by the adjacent member, ba, .which is the same size 
as member bc. (See fig. 6.) In problem 2, member ba - _ 
has zero axial load. In problems 3 and 4, there is axial 
tension in ba of magnitude P and 3P, respectively; 
In each problem, 'the cdmgression in member bc is of mngw 
nitude P, 
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Problem * Member ba Member bc 
2.'. Zero axial load Compression- P 
3 " Tension I! Compression P 
4 Tension 3P Compression P 

-.. . 
EI = 10,000 lb.fn.e EI = 10,000 Ib.in.= - 

a 9 C 

4, II =lOOin. 
--I 

. 

Figure 6. - Problems 2, 3; and 4. 

Imagine the external moment 
joint b. 

M to be applied at 
The correct value of the critical load is the 

lowest assumed load that will satisfy equation (7) which 
becomes, for problems 2, 3, and 4, 

S" ba -I- .s& = 0 (19 > 

For each of members ba and bc. in problems 2, 3, 
and 4, 

EI = 10,000,2b. in.= 

L = 100 in. 

On calculation of the values of L/j 
of the problems, 

for each span in each 
it is found by trial that the lowest value 

of P satisfying equation (19), or P,rit@ iS 

Problem -- .. Pcrit (1k > --- 
2 23.g9 
3 15.41 
4 1G.93 

The estimated value of-the critical load is gfven by 
the inverse slope of the approximately straight lfne ob- 

8 - 8, 
tained by plotting f;-zp' as ordinate aqailzst 6 - 8, 
as abscissa. For problem: 2, 3, alla 4, eqaation (5) be- 
comes 
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8 1 = --- 
S”ba + S”bc 

_ .W) 

In tables III, IV, and V, the assumed values of P 
and the corresponding values of 6 are given for problems 
2, 3; and 4, respectively. The curves established by the 
data in these tables are plotted fn figures 7, 8, and 9, 
respectively. A summary of the corresponding estimated 
critical loads for each problem is given in tables VI, VII, 
and VIII. - L .._- - 

In figure 7, the curve for P, = 0 is noticeably con- 
cave upward; whereas, in figures 8 and 9, this curve is def- 
initely concave downward. This change from concave upward 
to concave downward is caused by the tension in member be, 
which results in an overestimation of the critical load 
when the tension in member ba is zero but an underestima- 
tion when the tension is equal to P and 3P. (See tables 
VI, VII, and VIII.) These same conclusions hold in a lesser 
degree when O < p, < Pcrit* 

mhen the method of estimating critical loads is applied 
in the solution of practical problems, lt is desirable to 
know whether the true critical load is overestimated or un- 
derestfmated. From problems 1 and 2 it is concluded that, 
in the absence of tension members, the estimated critical 
loads are all greater than the true crftical load. (See 
tables II and V-1.) From problems 3 and 4 it is concluded 
that, in the presence of tension members, the estimated 
crftical loads are all less than the true critical load. 
(See tables,VII and VIII.) The region within which all es- 
timated critical loads are in good agreement with the true 
critical load cannot be definitely established in the gen- 
eral case. 

Qualitatively, the region of transition from over- 
estimating to underestimating the critical load can be es- 
tablished by noSting the trends in problems 2, 3, an+ 4. 
In problem 2, the poorest estfmate of the crftlcal load 
(small values of P and PI) is 12,8 percent on the unsafe 
side. In problems 3 and 4, the poorest -estimates are 69.6 
and 122.7 percent, respectively, on the safe side. In 
pr.ob,lem 2, no tenston member is present. In problem 3;the 
size, the axial load, and the number of the tension mombers 
are the same as for the compression members. In pr6blem 4, 
the axial load in the tension member is three times tho 

. 
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axial load in the compression member. It is therefore 
coficluded that the transitfan from overestimating to undor- 
estimating the critical load will occur when the size, the 
axial load, or the number of the tension members is small 
relative to the compreeaitin kmbers. . 

When all members in a given problem are compresSion 
members or when the effects of tensionare neglected in 
the calculation, as is' sometimes done in stability proby 

. lems of this type, the agreement of the estimated critical 
load with the calculated critical load will be as qood'aa 
that found in problems 1 and 2. When the effect of-ten- 
sion in tension members is considered, the precision of 

.-. the*estimated critical load can be determined'qualitatZvg- 
ly ‘by refer-ence to problems 2, 3, and 4. 

As in the case of problem 1, the agreement of the es- 
I. timated critical load with the calculated critical load ' 

for. problems 2, 3, and 4 becomes closer as,the values of 
P between which the inverse slope is calculated, approach 
'crit* The precision also increases as P, approaches 

Pcrita (See tables VI, VII, and VIII.) 

. TEE EFFECTIVE HODULUS 

Before the theory of thfs report can be applfed to 
problems involving compression members that are stressed 
beyond the elastLc range, as in problems 5 an_d 6, it is 
necessary to introduce an effective modulus E 50 de- 
signed that the results will be in good agreement with the 
accepted column formulas. 
. . 

Compression ldembers 

tiost engineers are familiar with the origin of the 
accepted column curve for a given material. A.t low 
stresses (stresses less than about one-half the yield 
point of the material)., the column strength is given by 
the Euler formula. At high stresses, laboratory tests 
always show that the column strength falls short of the 
value given by themEuler formula. An empirical straight 
line or a parabolic curve .Ls sometimes used to qivo the 
column strength within this range. 
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The theory of this report gives a buckling load that 
is analogous .to the strength given by the Euler column 
formula. As in the case of the Xuler formula, these loads 
would not check experimental values at hiqh stresses. A 
reduced strength must therefore be calculated consistent 
with the accepted column formula for the material of which 
the members are composed. These calculations are best made 
by UBO of the effective modulus x = TE. 

Consider the case of an ordinary column. If the Euler 
formula is written 

: = 
a E 

(2) 2 31 ! 

it mill give the strength at both low and high stresses. 
At low stresses, 7 = 1; whereas, at high stresses, 7 <l. 
The problem is -to determine how the effectfve modulus TE 
varies with the stress P/A. 

If equation (21) is solved for TE, the following 
equation is obtained 

(22 > 

The accepted column formula for any material fs always 
given in terms of the effective slenderness ratio 
(L/n p)= Thus, if any one of these formulas is solved 
for (L/,~P) and this value is substituted into equa- 
tion (22), there results an equation for the effect3ve 
modulus TE that is a function of the stress P/A. 

For example, consider the case of S.A.E. 1025 steel. 
The column formulas for this material are: 

--a.-. 

For -P x < 18,000 lb. per sq. in. , 

(23) 

- . . 

For 36,000 > s > 18,000 lb. per sq. in., 

P 
K = 36,600 ii 1.172 $ (24) 
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If equations (23) and (24)'are solved'for (L/G ) and 
these values are substituted'into,equation (22), B t e fgl- 
lowing values.are obtained for the effective modulus E = 
TE .' ,, . 

p‘ . 
202 b C18,OOO lb. per sq. in., -. 

3 =TE=E: ’ (25 1 

-For 36,000 '$ > 18,000 lb. per sq. in., 
. . 

z 1P =TE=-- 
na A 

(26) 

Equatios (25)' shows that, in' the long-column or elas- 
tic range, E = E. Equation (26) shows that, in the ahort- 

b column range, ?!! is a function of the stress P/A in the- 
member and is in no way dependent upon the stiffnose or end 
fixity of the member. 

'(Vhen the compression members of the structure are 
stregaed beyond the elastic range, the methods outlined in 
this report can also be used to calculate the critical 
load. The procedure is the same as in problems 1 to 4 ex- 
cept that, for each assumed load W on the structure, 
there is a different value of the effective modulus E. 
These values of Z are obtained by USQ of equations (25) 
and (26) if the material is S.A.E. 1025 steel. For any 
other material, corresponding equations can be derived. 

Tension Members 

When the effect of axial load in the tension members 
is considered, the variation of B with stress for ton- 
sion members can be established, theoretically, by tho use 
of the double-modulus theory of bonding and of the stress- 
strain ourve of the mater&l. For such calculations, how- 
ever, the stress-strain. curve must be accurately drawn to 
a suitable scale. In the absonco of a known or a calcu- 
lated variation of j with stress, the following approx- 
imate method can be used to establish E for tension mem- 
bers; I 

. 

1. mhen the stress is *less than the maximum al- 
lowed for a column of the same material, use the spme 

. *. 
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values of f for tenqion as for compression at the _. 
same stress. -. 

2. When the stress is greater than the maximum 
allowed for a column of the same material, assume 

'that z=O. 

The values of Z for tension members obtained.by 
this method will be conservative. Whether or not they are 
too conservative is a matter to be settled by tests. In 
the regions of yield point and of maximum tensile strength, 
the fla2ness of the stress-strain curve will certainly 
cause E to approach zero. Because the maximum stress al- 
lowed in columns is closely associated with the yield 
point, this method offers a convenient solution of 3! for 
tension members. - _. 

Problems 5 and 6 

The purpose of problems 5 and 6 is to show that the 
method of estimating crItica loads pred-ented fn this 
paper gives good results when'the compression members lie 
mithfn the short-column range. Except for the different 
dimensions and the fact that the members with axial load 
are stressed beyond tho elastic range, these problems are- 
similar to problems 2 and 3, respectively. 

- 

Problem Member ba Member bc 

5 Zero axial load Compression P 
6 Tension P Compression P .._ 

Material: S.A.E. 1025 steel tube continuous from a to 
C with the following dimensions.: 

Diameter, d 1.625 in.. . 
Wall thickness, t .065 in.. 
Area, A ,3186 sq. in. 
Moment of inertia, I .0970 ine4 

P'Fgure 10. - Problems 5 and 6. 
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The essential dTmensions for problem's 5 and 6 are 
given in figure 10. The effective modulus 3 for any 
member is a function of the stress PIA &n that monbor. 
The numerical value of .E for any assuaed load P is 
thoraforo given by equations (25) and (26), the material 
being S.A.E. 1025 steel. By the same methods as used in 
the solution of problems 2 and 3, it is found that the 
lowest value of P to satisfy equation (lg), o,r Pcrit, 

is , 

Problem -- 
5 9,420 
6 9,510 

The necessary calaulations for estimating the critical 
loads for problems 5 and 6 were made by the same nathods 
used for problems 2 and 3 except that in the calculation 
of the stiffness of the members the offectivo modulus % 
was used in glace of Young*s modulus E. The results of 
those calculations are given in tables IX to XIV, 

In figures 11 and 12, gs. is plotted against . 

e- 6, for problems 5 and 6. Itlis weferable, however, 
to compare the re’sulte given in tables XI and XIV rather 
than to draw conclusions from figures 11 and 12, 

In problem 5, the axial load in member ba is eero; 
whereas, in problem 6, member be is subjected to axial 
tensron equal to the axial compression of member bc. 
Comparison of the estimated critical loads for each of 
these problems (tables XI and XIV) shows that the critical 
load is usually, but not always, overestimated when ltha 
tension in member ba is zero and is usually, but not al& 
ways, underestimated when the tensdon fn membor ba is 
equal to the compression in member bc. These same conclu- 
sions were found for problems 2 and 3. 

. 

Comparfson of the precision of the estfmated critical 
loads for problems 5 and 6 (tables XI and XIV, respoctive- 
ly) with the precfsfon of the estimated critical loads for 
problems 2 and 3 (tables VI and VII, respectively) is not 
justified. For problems 2 and 3, the series of eptimatod 
critical loads are based upon values of P, taken at intor- 
vals of roughly 10 percent of P,,.t; whorens, for problems 
5 and 6, this interval was not maintained. When the members 
lie in the short-column ranpo, an estimatea critical load 
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based upon small values of P, mhiph lie in the elastic 
range, gives an estimated critical load much higher than . 
the true critical load. Consequently, fn problems 5 and 
6, the assumed values of P for'which the estimated crit- 
ical load was obtained were made to correspond to values of 
PIA that are associated with the shor&Lolumn range. 

In the solution of any problem, it is necessary Only 
that the assumed loads be less than the true critical load. 
As the assumad loads approach the true critical load, the 
pracision of the estimated cr-itical ,load is increakod. 
(See tables XI and XIV.) It is therefore deeirable to ox- 
arcise the best judgment possible in the selection'of the 
assumed loads., In any case, howaver, the method of osti- 
mating tho critical load as doscribed in this paper;should 
be rogardoa as a tool to be used in finding thk lowest . 
Critical load that will satisfy the equation for neutral 
stability. If it is desired that the estimated critical 
load be conservative rather than err on tho unsafe side, the 
affect of the axial load in the tonsion mombars should be ' 
considered fn the calculation. 

CONCLUSIONS 
. 

1. If the distribution .of the total,load m on the 
structure does not change as W increases, then the axfal 
load in each member is proportional to W. Thus, if 

g-g iis plotted as ordrnate against 6 - 8,. US abscissa, 

the ckxe obtained when W approaches wcrit . is essential- 
ly a straight line the inverse slope of which i.8 Wcrit " 
w 1' where 

6 is the rotation of a joint under tho moment M 
at load W on the structure. 

01 and W,,.' ,fnitial values of 13 and W, respec- 
tively. 

w crit' lowest critical load. 

and 

V, < B < W,,j,t 
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Thus, if simultaneous values of load and rotation aro plot- 
ted as just described beginning with m, as the initial 
load, the value of wcrit - V~ is easSly obtained. The 
value of T&it fs then qiven by the equation 

wcrft = (w,rit u al) * ‘1 

2. The rotation 0 of a joint can be calculated by 
.the methods of moment distribution. The equation to be 
used deuonds on whether the stiffness or the series crite- 
rion for stability forms the basis of the calculation 

3. For loads tvithin the elastic range, the estimated 
critical load more closely aqrees with the calculated crit- 
ical load as the values of. IV between which the inverse 
slope is calculated approach .V,.r~t. The agreement 9s 
also closer as TV, approaches 

Grit l 

4 . For loads beyond the elastic rango, the rQsults of 
computation have shown that conclusion 3 usually, but not 
always, a-oplies. In cases where it does not amply, tho 
errors are of the order of a fraction of 1 percent. For 
practical design calculntions,.conclusion 3 therefore 
holds for loads beyond the elastic- range as well as for 
loads rpithin the elastic range. 

5. Bhen all members in a given problem are compres- 
sion members or when the effect-s of tension are neglected, 
as is sometimes done in practical calkulations, the calcu- 
latod critical load is overostfmated. When the affect of 
tonsion in the tension mombors is considorod, however, the 
calculstod critical load is underestimated. The region 
within whfch all estimated critical loads are in good agroo- 
mant tvith the calculated critical load cannot bo dofinftoly 
established in the general ~aso. Tho transition from over- 
estimating to undorostimating the calculated critical load 
tends to occur, however, vhon the size, the axial load, or 
the number of tension mombors is small rclativo to tho corn- 
@rossion members. In many practical probloms, the preci- 
sion with which t-he estimated critical load.agroes tvith the 
calculated critical load can be qualitatively determined 
by rcfqronco to the problems of this report. 

6. The mothoh of estimating the critical load should 
always be retarded as a tool to aid in finding tho lowest 
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load that satisfies the equation for neutral stability, 
This lowest load fs the calculated critical load for the 
problem. 

Lanqloy Memorial Aeronautical Laboratory, 
Natfonal Advisory Gonnfttee for Aeronautics, 

Langley Field, Va., June 8, 1939. 
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TABLE IX 

Calculated Data for ProhIem 3 

TABLIZ I 

CoMated ihka for %blem i 

e. 0 I Ff.Sb P, - 7 lb 

P 

(lb) 

0 
I.b 

3.e 
da 
684 
8.0 
4.6 
IL? 
aa 
14.4 

P 

i lb.) 

0 
I 
a 

.’ 
4 
5 
b 
1 
b 
9 

ldLLl --_. 

ii% 

.6OOl 
,03%kSl 

-- 

d 

D.OOCC 0 I I I 

TA0L.E IcU 

Calculated Data for Rbblcm 2 Calculated Dqtc, for koblem 4 

0 
I.7 

34 
5. I 
bs-3 
31 
IO.3 
II.9 
I3.b 
15.3 



PI 
(lb. 

0 

3 

-- 

7 

TABLE II 

Summary of Estimated Critical Loads 

for Problem 1 

. 
P crit (theoretical) = 9.87 lb.1 

I_- 

Values of P 
between which 

slope is cblculated 
(1%. 1 

1 and 2 

4 and 5 

8 and 9 
I-- --- 

4 and 5 

8 and 9 

8 and 9 

P crit (dstimated) 

(1%. 1 
-- 

10.33 

10.10 * 

9.89 

10.03 

9.88 
-- 

9.87 
- 

P crit (estimated) 
P crit (theoretical) 

1.047 

1.023 

1.002 
-- --- 

1.016 

1.001 
- - 

1.000 

. 



TABLE p[: 

Summary of Eahmatcd Critical Leads 

for Pmbhm 2 

[ P&i+ horiticql) - IS.89 lb.1 

1.4 and a.6 IS.Ll I.ICB 
a s*c and 1.0 t4.7c Lobs 

I62 and IZC IS.% LOU5 
5.b and 1.0 14.54 I.047 

4.2 
11.2. and l2.b 13.94 1.004 

9.8 Il.5 and IL.6 IS.91 f# Loal 

TABLE 91I 

L I I I 1 

TABLE x 

&mmary ot E&&d Ctiticol Lo& Summary of Estim&sd hiticnl Loads 

for Problem 3 for Problem 5 

[Pa,+ h-h&&) - IS.*I .Ih 1 [Pw,t (thcoretiial) -‘9,4z.o lb, ] 

0 

4.8 

II.2 

I.6 mad 35 4. ca 
b.4 and 8.0 Il.89 

If’..0 and KC ISi 

6.4 d a.0 13.50 
1z.8 and 141;4 159 

l&.8 nnd 14.4 15.41 

pm4 

.I75 

.ws 
-- 

O.dlL 
.we 

1.000 

TABLE XIII 

. 

Summary of hihntsd Critical Laada 

for Problem 4 

?L 
t 
P 
t 
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TABLE XII: 9 
P 

Stiffness Vnlws for t=~-nblcm 6 
? 
P 
I 

TABLE IK 

Member bc I I E(nnb6rs ba 

TABLE xm. 

Ccdoulatcd Data far F+aMem 6 
Calculated Data for F’mblcm 5 

0 
5754.8 
wlt.0 
7009.1. 
lb&..* 
ma3.b 
apL0.a 



. 

0 

+ 
6,734i8 

7,646.4 

TABLI XIV 

Sumbary of Estimated Critical LIoads 

for Problem 6 

[Per-t (theoretical) = 9,510 lb.1 

Values of P 
between nhEch 

slope ia calculated 
(13.) .- - 

5,734.8 and 6,372.0 

7,009.2 and 7,646.4 

8,283.6 and 8,920r8 

7+OOg72 and 7,646.4 8,761?5 .921 

8',283.6 and 8,920.8 9,532.4 1.002 
-- --- 

8,283.6 and 8,920.8 
--- 

P cret (es!fmated) qcrft (estimated)- 

(1Jh > 
P crit (theoretical) 

7,7?.5.2 0.811 

8,546.l .899 

9,442.6 .993 

-- - 

9,573.6 t 1.007 
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